2,705 research outputs found

    Yin Yang Bipolar Atom - An Eastern Road toward Quantum Gravity

    Get PDF
    Based on bipolar dynamic logic and bipolar quantum linear algebra, a causal theory of YinYang bipolar atom is introduced in a completely background independent geometry that transcends spacetime. The causal theory leads to an equilibrium-based super symmetrical quantum cosmology of negative-positive energies. It is contended that the new theory has opened an Eastern road toward quantum gravity with bipolar logical unifications of particle and wave, matter and antimatter, relativity and quantum entanglement. Information recovery after a black hole is discussed. It is shown that not only can the new theory be applied in physical worlds but also in logical, mental, social and biological worlds. Falsifiability of the theory is discussed

    Bipolar Quantum Logic Gates and Quantum Cellular Combinatorics – A Logical Extension to Quantum Entanglement

    Get PDF
    Based on bipolar dynamic logic (BDL) and bipolar quantum linear algebra (BQLA) this work introduces bipolar quantum logic gates and quantum cellular combinatorics with a logical interpretation to quantum entanglement. It is shown that: 1) BDL leads to logically definable causality and generic particle-antiparticle bipolar quantum entanglement; 2) BQLA makes composite atom-atom bipolar quantum entanglement reachable. Certain logical equivalence is identified between the new interpretation and established ones. A logical reversibility theorem is presented for ubiquitous quantum computing. Physical reversibility is briefly discussed. It is shown that a bipolar matrix can be either a modular generalization of a quantum logic gate matrix or a cellular connectivity matrix. Based on this observation, a scalable graph theory of quantum cellular combinatorics is proposed. It is contended that this work constitutes an equilibrium-based logical extension to Bohr’s particle-wave complementarity principle, Bohm’s wave function and Bell’s theorem. In the meantime, it is suggested that the result may also serve as a resolution, rather than a falsification, to the EPR paradox and, therefore, a equilibrium-based logical unification of local realism and quantum non-locality

    G-CPT Symmetry of Quantum Emergence and Submergence -- An Information Conservational Multiagent Cellular Automata Unification of CPT Symmetry and CP Violation for Equilibrium-Based Many-World Causal Analysis of Quantum Coherence and Decoherence

    Get PDF
    An equilibrium-based YinYang bipolar dynamic Generalization of CPT (G -CPT) symmetry is introduced based on energy/information conservational quantum emergence-submergence. As a bottleneck of quantum computing, quantum decoherence or collapse has been plaguing quantum mechanics for decades. It is suggested that the crux of the problem can trace its origin back to the incompleteness of CPT symmetry due to the lack of holistic representation for equilibrium-based bipolar coexistence. In this work, the notion of quantum emergence-submergence is coined as two opposite processes with bipolar energy/information conservation. The new notion leads to G-CPT symmetry supported by a Bipolar Quantum Cellular Automata (BQCA) interpretation of quantum mechanics. It is shown that the new interpretation further leads to the unification of electromagnetic particle- antiparticle bipolarity and gravitational action-reaction bipolarity as well as CPT symmetry and CP violation into a philosophically, geometrically and logically different quantum gravity theory. On one hand, G -CPT symmetry enables a Bipolar Quantum Agent (BQA) to emerge as a bipolar quantum superposition or entanglement coupled to a globally coherent BQCA; on the other hand, G -CP violation supports a causal theory of BQA submergence or decoupling from the global coherence. In turn, BQAs can submerge from one world but emerge in another within YinYang bipolar quantum geometry. It is suggested t hat all logical, physical, social, biological and mental worlds are bipolar quantum entangled under G -CPT symmetry. It is contended that G -CPT symmetry constitutes an analytical paradigm of quantum mechanics and quantum gravity— a fundamental departure from “what goes around comes around ”. The new paradigm leads to a number of predictions and challenges

    Beyond Spacetime Geometry – The Death of Philosophy and Its Quantum Reincarnation

    Get PDF
    Contrary to the “end” and “death” assertions on philosophy, this paper predicts an equilibrium-based and harmony-centered scientific reincarnation of philosophy. Logically, the reincarnation is backed by a formal system and a background independent geometry that transcends spacetime. Physically, it is supported by definable quantum causality and bipolar logical unifications of matter and antimatter, particle and wave, big bang and black hole, relativity and quantum entanglement. Philosophically, it is distinguished from Western metaphysics and dialectics as well as the Dao of Laozi. It is named a quantum reincarnation for its central claim that YinYang bipolar quantum entanglement is the source of causality for the Being of beings following the 2nd law of thermodynamics. Thus, it presents a modest unification of science and philosophy for their reciprocal interaction (Note: Equilibrium subsumes non-equilibrium and quasi—equilibrium as local non-equilibriums can form global equilibrium or quasi-equilibrium)

    YinYang Bipolar Quantum Geometry and Bipolar Quantum Superposition Part II—Toward an Equilibrium-Based Analytical Paradigm of Quantum Mechanics and Quantum Biology

    Get PDF
    In Part I of this paper, YinYang bipolar quantum agent (BQA), bipolar quantum geometry (BQG) and 2-dimensional generic bipolar quantum superposition are introduced with a geometrical and logical exposition of Dirac 3-polarizer experiment. While the exposition qualifies BQG as a geometry of light, it is shown in this paper that the logical exposition can be extended to an analytical paradigm of quantum mechanics and quantum biology. It is shown that BQG as the geometry of light is also the geometry of Nature with a logical unification of matter and antimatter atoms into a bipolar quantum cellular automaton (BQCA) through multidimensional YinYang bipolar quantum superposition using bipolar quantum linear algebra (BQLA). With the BQCA interpretation of quantum mechanics, it is shown that matter and antimatter self-organization and spacetime emergence is logically possible within BQG. A scalable BQCA model for biological repression activation and/or degeneration-regeneration is introduced. Bipolar cellular division and bipolar fractality are proposed. Background independent normal and abnormal bipolar fractal branching is proposed. A discussion on quantum gravity and mathematical abstraction is presented. A few challenges and predictions are posted. It is contended that this work leads to an analytical paradigm of quantum mechanics and quantum biology that may contribute to equilibrium-based analysis of quantum decoherence and collapse as associated with quantum measurement

    YinYang Bipolar Quantum Geometry and Bipolar Quantum Superposition Part I—A Background Independent Geometrical and Logical Exposition of Dirac 3-Polarizer Experiment

    Get PDF
    Bipolar quantum agent (BQA), bipolar quantum geometry (BQG) and bipolar dynamic logic (BDL) are introduced based on bipolar complementarity – a logical extension to Niels Bohr’s particle-wave YinYang duality principle. Complete geometrical background independence is proposed and BQG is proven completely background independent which leads to the notion of bipolar quantum superposition – an equilibrium-based logical approach to superposition. It is shown that the logical linearity of BDL can be unified with the physical nonlinearity of bipolar dynamic equilibrium. It is proven that a single polarized photon as a BQA can be logically channeled through the three polarizers in Dirac’s experiment with BDL regardless of quantum uncertainty. It is illustrated that BQG, BDL and bipolar probability adds analytical power to quantum mechanics. It is concluded that bipolar quantum superposition demystifies Schrödinger’s cat paradox from a weird quantum phenomenon to a logically comprehendible YinYang bipolar dynamic equilibrium interpretation of quantum superposition and leads to an analytical paradigm of quantum mechanics and quantum biology as presented in Part II of this work

    Revealing the Ubiquitous Effects of Quantum Entanglement-Toward a Notion of God Logic

    Get PDF
    Following Spinoza-Einstein’s interpretation of God or nature, the notion “God Logic” is proposed. This notion is to serve as an elicitation for a consistent set of necessary criteria for: 1) developing the logical foundation of quantum gravity as envisaged by Einstein, 2) revealing the ubiquitous effects of quantum entanglement as suggested by Roger Penrose, and 3) programming the universe as proposed by Seth Lloyd. An evolving set of eleven criteria is proposed for the notion. The possibility of inventing such a logical system is analyzed. A supersymmetrical candidate logic of negative-positive energy dynamic equilibrium is introduced and assessed against the set of criteria. It is shown that the first 10 criteria are met or partially met by the candidate. But the question whether the 11th criterion has been or can be met is left open for discussion and further research effort. The assessment leads to a few predictions. Notably, it is predicted that, should Boson-Fermion symmetry or broken symmetry be observed, it would be caused by bipolar symmetry or broken symmetry of negative-positive energies

    RoughSet-DDPM: An Image Super-Resolution Method Based on Rough set Denoising Diffusion Probability Model

    Get PDF
    Image super-resolution aims to generate high-resolution (HR) images from low-resolution (LR) inputs. Existing methods like autoregressive models, generative adversarial networks (GANs), and denoising diffusion probability models (DDPMs) have limitations in image quality or sampling efficiency. This paper proposes Rough Set-DDPM, a new super-resolution technique combining rough set theory and DDPMs. The rough set formulation divides the DDPM sampling sequence into optimal sub-columns by minimizing roughness of sample sets. Particle swarm optimization identifies the sub-columns with lowest roughness. Rough Set-DDPM applies iterative denoising on these optimal columns to output HR images. Experiments on the FFHQ dataset validate that Rough Set-DDPM improves DDPM sampling efficiency while maintaining image fidelity. Quantitative results show Rough Set-DDPM requires fewer sampling steps and generates higher quality HR images compared to autoregressive models and GANs. By enhancing DDPM sampling, Rough Set-DDPM provides an effective approach to super-resolution that balances image quality and sampling speed. The key contributions include introducing rough sets to optimize DDPM sampling and demonstrating superior performance over existing methods
    • …
    corecore